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The Iow-Mach number approximation is considered to be less restrictive than the Boussi- 
nesq approximation. The former represents wel l  the f low behavior in enclosures wi th 
relatively large temperature difference, and therefore permits a better understanding of 
thermal ly driven flows. However, as the f low becomes chaotic or weakly turbulent, it 
becomes uncertain whether  the Iow-Mach number approximation can properly describe 
the transit ion behavior of the f low. In the present study, the behavior of transit ional 
thermal ly driven f low in a two-dimensional  (2-D) dif ferential ly heated square cavity fi l led 
wi th  a gas has been numerical ly investigated in cases where the temperature difference 
increases. The exact governing equations, including the equation of state for ideal gas, are 
used to calculate the initial phase to transit ion, and the results are compared in detail w i th  
those obtained using the Boussinesq-approximated and Iow-Mach number equations. The 
applicabil i ty of these approximated governing equations has been discussed. It turned out 
that beyond a certain Rayleigh number, even the Iow-Mach number approximation may not 
always predict the transit ion behavior of the f low. © 1997 by Elsevier Science Inc. 
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Introduction 

It is well recognized that thermal convection (i.e., thermally 
driven flow) in differentially heated enclosures has important 
technological applications, such as solar energy collectors, elec- 
tronic equipment, cooling of nuclear reactors, ventilation of 
rooms, and crystal growth in materials processing. For thermal 
convection in an enclosure with complex and realistic conditions, 
a detailed research review has been made by Fusegi and Hyun 
(1994), considering spatial and temporal variations of thermal 
boundary condition, variable property effects, and three-dimen- 
sionalities. 

In general, the numerical treatment of this problem has been 
based on the Boussinesq approximation (Boussinesq 1903). How- 
ever, this approximation is limited, in principle, to very small 
temperature difference, and thus its use for analysis does not 
always give the physically exact behavior of thermal convection 
under the practical conditions. 

Recently, owing to the advent of powerful computers and 
better numerical algorithms, a set of governing equations called 
"low-Mach number approximation" has gained increasing usage. 
These equations are less restrictive than the Boussinesq-ap- 
proximated equations and can be used to simulate thermally 
driven flows with a large temperature difference (Rehm and 
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Baum 1978; Paolucci 1982; Fr6hlich et al. 1992; Horibata 1992). 
There are several analyses of thermal convection in a square 
cavity using these equations at high-Rayleigh number (Paolucci 
and Chenoweth 1989; Paolucci 1990; Le Qu6r~ 1992). However, 
as the flow becomes chaotic or weakly turbulent (relatively large 
velocity, temperature, and pressure fluctuations), it becomes 
uncertain whether the low-Mach number approximation can 
properly describe the transition behavior of the flow. 

In the present study, the exact governing equations including 
the state equation for ideal gas are used to calculate the initial 
phase to transition of thermal convection in a square cavity with 
increasing temperature differences. The results are compared in 
detail with those obtained using the Boussinesq-approximated 
and low-Mach number equations. To the authors' knowledge, the 
examination regarding the limit of applicability of the low-Mach 
number equations is not available in the literature. Therefore, 
attention is focused on the applicability of these approximated 
governing equations. The results for different Rayleigh numbers 
and temperature differences parameters are illustrated with time 
histories, power spectra, mean temperature, mean velocity, and 
intensities of velocity and temperature fluctuations. 

Problem statement and governing equations 

The problem treated in this study is thermal convection in a 
two-dimensional (2-D) square cavity of size L. As shown in 
Figure 1, the left and right side walls of the cavity are isothermal 
at respective temperatures of T h and T~. (T h > To), and the 
bottom and top walls are adiabatic. The working fluid is a gas, 
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and all fluid properties except density are assumed to be con- 
stant, with attention being focused on the buoyancy effect gener- 
ated by the density variation. If the density variation cannot be 
properly modeled, it may become worthless to model other fluid 
properties. Then, the governing equations for conservation of 
mass, momentum, and energy with the ideal gas law become the 
following: 

D o / D r  + p(V'v)  = 0 (1) 

pDv/D'r  = --Vp + IxV2V -]- pg (2) 

p c p D T / D ' r  = XV2T (3) 

p = p R T  (4) 

The compressibility term in Equation 2 and the viscous dissipa- 
tion and the pressure terms in Equation 3 are neglected, because 
they are several orders of magnitude smaller than the other 
terms for a quasi-steady closed system under the condition of 

uniform wall temperature (no significant difference has been 
observed between the results calculated with and without these 
small-order terms). By normalizing these equations with the 
reference length L, the temperature difference ATw and physical 
properties, four dimensionless parameters governing this system 
have been noticed: the Galilei number Ga, the Prandtl number 
Pr, the temperature difference parameter 13 ATw, and the coeffi- 
cient ~/Ma 2 (the Mach number  is defined as Ma = 
(g~ AT~ L)I /2/C,  where c is the velocity of sound). In the 
present study, these governing equations are referred to as the 
exact governing equations. 

On the other hand, the low-Mach number equations (LMN) 
are obtained from the expansion of all variables, such as velocity, 
pressure, density, and temperature in a series of small Mach 
numbers. Then, the pressure included in the energy equation, 
which is neglected in Equation 3, is approximated by a thermody- 
namic pressure dependent only on time. This pressure is deter- 
mined by the space integral of the thermal energy equation for 
instantaneous density and temperature. However, because the 
pressure term is very small under the quasi-steady condition, as 
mentioned above, the variation of density can be expressed as a 
function of temperature independent of pressure, and thus, the 
state equation may be expressed as follows: 

oT = const (5) 

Consequently, Equations 1-3 and 5 correspond to the low-Mach 
number equations. The three dimensionless parameters govern- 
ing this system are the Galilei number Ga, the Prandtl number 
Pr, and the temperature difference parameter 13 AT w. As long as 
Equation 5 is strictly maintained (e.g., steady laminar flow), the 
low-Mach number equations can describe the correct flow behav- 
ior. 

Most of the existing numerical works concerning thermal 
convection are based on the governing equations with the 
Boussinesq approximation. These equations are expressed as 
follows: 

V 'v  = 0 (6) 

Dv/D' r  = - Vp*/p + vV2v - g l3 (T-  T o) (7) 

D T / D ~  = ctV2T (8) 

Notation 

C 

Cp 

C v 
D/D ' r  E~ 
f 
g 
g 
Ga 
Gr 
L 
Ma 
P 
Pr 
R 
Ra 
T 
rc, rh 

~o 

V 

U,U 

x , y  velocity of sound, ('yRTo)1/2 
specific heat at constant pressure 
specific heat at constant volume Greek 
substantial derivative 
vertical velocity fluctuation spectra ct 
frequency of fluctuation 13 
gravitational vector ATw 
gravitational acceleration k 
Galilei number, gL3 / v  2 "Y 
Grashof number, Ga 13 A T  w Ix 
reference length (square cavity side length) v 
Mach number, (g13 A T  w L ) 1 / 2 / c  P 
pressure P0 
Prandtl number, Jl, Cp/h. "r 
gas constant 
Rayleigh number, Gr Pr 
temperature 
temperatures of cooled and heated isothermal side r J  
walls ( ) '  
reference temperature 

velocity vector 
vertical and horizontal velocity components 
coordinates in vertical and horizontal directions 

thermal diffusivity 
coefficient of thermal expansion 
temperature difference, T h - T c 
thermal conductivity 
ratio of specific heats, Cp/C~ 
viscosity 
kinematic viscosity 
density 
reference density 
time 

Superscripts 

time-averaged value 
fluctuating component 
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The pressure p* in Equation 7 represents the pressure changing 
with fluid motion. These equations are derived by assuming that 
only the density related to the body force varies proportionally 
with temperatures, while other properties are kept constant. 
Thus, the mass conservation equation results in a simple form, 
and theoretical treatment becomes much easier. Dimensionless 
parameters relevant to Equations 6-8  are the Grashof number 
Gr ( =  Gal3 AT w) and the Prandtl number Pr. 

Numerical results and discussion 

The present study is restricted to the calculation of the initial 
phase of transition. The cavity is filled with air (Pr = 0.71), and 
the computations are performed for Rayleigh numbers Ra (=  
GrPr)  ranging from 1.6 x 108 to 3.5 x 108, with a fixed cavity 
size and varying the temperature difference parameter 13 ATw = 
0.05 ~ 0.112. The coefficient of thermal expansion is evaluated at 
the reference temperature T O = (T h + T~)/2 as 13 = 1~To, so that 
13ATw =0.112 corresponds to AT w - 3 4  K, and the reference 
temperature T O = 300 K. The chief aim of the present study is to 
examine the applicability of the approximated governing equa- 
tions (namely, the Boussinesq-approximated and low-Mach num- 
ber equations) by comparing their characteristic solutions with 
those obtained from the exact governing equations. For solving 
the governing equations, a well-tested control volume formula- 
tion based on the SIMPLE pressure-correction method, second- 
order central difference scheme for convective and diffusive 
terms has been used. The domain is covered with nonequidistant 
grids of 120 x 120 (x ,y) ,  having a concentration of grid lines 
near the walls and staggered grids for velocities. To check both 
the accuracy and correct implementation of the 2-D code, 
steady-state calculations at Ra = 10 s were performed with the 
Boussinesq approximation. The results for the Nusselt number 
and velocity profiles almost agreed with those obtained by Le 
Qu6r6 (1991) and Henkes and Hoogendoorn (1993). The first 
instability (occurrence of small oscillation) was noticed at 1.7 x 
108 < Ra < 1.8 x 108 regardless of which governing equations 
were used. This is in good agreement with the results reported by 
Chenoweth and Paolucci (1986) and Henkes (1990). 
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Figure 3 Time histories for maximum vertical velocities at 
half the cavity height (Ra=2 x 108); (a) Boussinesq; (b) LMN 
(13ATw=O.065); (c) exact (13ATw=O.065, -yMa 2= 10 5) 
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To investigate the development of flow oscillation with an 
increase in the Rayleigh number, the spatial averaged values of 
the intensities of vertical velocity fluctuations have been plotted 
in Figure 2. There is no distinction among the solutions obtained 
from the three different governing equations up to Ra = 2.5 x 
108, although the result with Boussinesq approximation shows 
somewhat high intensities. As the Rayleigh number increases 
beyond 2.5 x 108, high-frequency fluctuations are superposed on 
low-frequency oscillations, and the flow becomes quasi-periodic, 
which suggests the occurrence of a so-called second bifurcation 
(Henkes 1990; Xia et al. 1995). This phenomenon is observed 
regardless of the system of governing equations. Then, a differ- 
ence between the exact and Boussinesq-approximated solutions 
clearly appears; whereas, the intensities obtained from the low- 
Mach number equations coincide with those of the exact equa- 
tions up to Ra = 3 x 108. However, beyond Ra = 3 x 108, the 
solution given by the low-Mach number approximation deviates 
gradually from the exact solution. 

The periodicity in the vertical velocity maximum observed 
near the hot vertical wall at half the cavity height for Ra = 2 x 108 
is shown in Figure 3. It is obvious that solutions of the low-Mach 
number and exact equations coincide quite well (Figures 3b and 
3c), and the dominant low frequency reasonably agrees with that 
predicted by Henkes (1990). The solution of the Boussinesq-ap- 
proximated equations shows a basic periodicity similar to that of 
the exact solution, but the waveform and the value of the mean 
vertical velocity are different from those of the exact solution 
(Figure 3a). 

At Ra = 2.5 x 108, when the second bifurcation generates, 
the flow becomes quasi-periodic, and the normalized power 
spectra of the fluctuations of the maximum vertical velocity 
observed near the hot wall at half the cavity height are character- 
ized with marked peaks at fundamental frequencies, as shown in 
Figure 4. This quasi-periodic regime is observed for the three 
different sets of governing equations. However, as the Rayleigh 
number increases to 3 x 108, these distinct peaks disappear in 
the power spectrum with the Boussinesq approximation (Figure 
5a); whereas, the low-Mach number and exact equations give 
almost the same spectrum still having three peaks as shown in 
Figures 5b and 5c. Figure 6 compares the power spectra obtained 
from the low-Mach number and exact equations at Ra = 3.5 x 
108. When the low-Mach number approximation is used, the flow 
can no longer be described by a small number of well-defined 
characteristic frequencies, showing that the flow is becoming 
chaotic or weakly turbulent. On the other hand, the solution of 
the exact equations still gives quasi-periodic characteristics, as 
shown in Figure 6b. These results indicate that the flow develop- 
ment within the square cavity passes through different dynamical 
regimes depending on the governing equations, and premature 
chaotic flows are predicted with the approximated governing 
equations (i.e., the Boussinesq-approximated and low-Mach 
number equations) for the Rayleigh number increment. Also, for 
the same Rayleigh number (Ra = 3.5 x 108), an evaluation of the 
neglected pressure term in Equation 3 has been attempted. It is 
found that this term is of order 2.5 x 10 -4 of the other terms. 
This supports what we previously mentioned regarding the pres- 
sure term. 

Figure 7 shows the mean vertical velocity and temperature 
distributions near the hot and cold vertical walls at half the cavity 
height calculated with the Boussinesq-approximated, low-Mach 
number and exact equations at Ra = 3.5 x 108. A general aspect 
is that the mean velocity and temperature in the boundary layers 
formed near the vertical walls have laminar-like profiles. There is 
no discrepancy among the results despite the fact that the 
fluctuation spectra are different form each other, as seen in 
Figure 5. 
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For Ra = 3 x l0 s, the intensities of velocity and temperature 
fluctuations at half the cavity height are presented in Figure 8. A 
good agreement exists between the solutions of the low-Mach 
number  and exact equations (Figures 8b and 8c). It is found that 
the fluctuations take their maximum intensity in the core region. 
On the contrary, the solution of the Boussinesq-approximated 
equations shows a different behavior (Figure 8a), where the 
intensity profiles of velocity and temperature fluctuations are 
symmetric and being flattened. Although these turbulent quanti- 
ties obtained from the low-Mach number  and exact equations 
coincide with each other up to Ra - 3 × 10 s, some discrepancies 
appear  at Ra = 3.5 × l0 s, as seen in Figure 9. The intensities of 
velocity and temperature fluctuations become maximum near the 
boundary-layer edges. This indicates that the instability due to 
internal waves (Chenoweth and Paolucci 1986) or thermal effects 
(Ravi et al. 1994) occurs before the boundary layer becomes 
unstable. However, as expected from Figure 9, it is evident that 
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the transition to turbulence in thermal convection with increas- 
ing the Rayleigh number may not be correctly grasped, even with 
the low-Mach number approximation. 

C o n c l u d i n g  r e m a r k s  

In general, laminar-turbulent transition of thermally driven flows 
in cavities has been discussed using approximated equations such 
as the Boussinesq-approximated and low-Mach number equa- 
tions. By comparing the solutions obtained with the Boussinesq- 
approximated, low-Mach number, and exact equations (in a 
practical sense), it is found that the low-Mach number solutions 
certainly coincide with those of the exact equations up to a 
certain Rayleigh number. However, when the flow becomes 
weakly turbulent, the solutions given by the low-Mach number 
approximation deviate gradually from those of the exact equa- 
tions. This means that even the low-Mach number equations, 
which are less restrictive than the Boussinesq-approximated 
equations, may not properly describe the transition behavior of 
the flow under realistic temperature conditions beyond a certain 
Rayleigh number. Therefore, the use of the exact governing 
equations may become necessary at higher-Rayleigh numbers. 
But these governing equations require large computational time 
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for solving and thus are difficult to be developed into analysis of 
turbulence. A new approach would be needed for advanced 
studies of  thermally driven flows. 
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